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Abstract  

 

A simplified multi-linear stress strain approach has been used to obtain the closed form 

nonlinear moment curvature response for epoxy resin materials. The model consists of 

constant plastic flow in tension and constant yield in compression. The multi-linear stress 

strain model is described by two main parameters in addition to four non-dimensional 

tensile and five non-dimensional compressive parameters. The main parameters are 

modulus of elasticity in tension and strain at the proportional elastic limit point in 

tension. The nine non-dimensional parameters are strain at the ultimate tensile stress, 

maximum strain, post elastic proportionality stiffness, and post peak strength in the 

tension model and strain at the proportionality elastic limit, strain at yield strength point, 

maximum strain, initial elastic stiffness and post elastic proportionality stiffness in the 

compression model. Explicit expressions are derived for the stress-strain behavior of the 

polymers. Closed form equations for moment curvature relationship are presented. The 

results of tension, compression, and bending tests using digital image correlation 

technique are presented.  Load deflection response of flexural three point bending (3PB) 

samples could be predicted using the moment curvature equations, crack localization 

rules, and fundamental static equations. The proposed nonlinear moment curvature shows 

good predictions when compared to experimental results.      

 

Keywords epoxy resins, stress strain relation, moment curvature, material properties, 

plastic flow, nonlinear behavior, flexural response, load deflection, three point bending  

 

Introduction 

 

Epoxy resins are one of the frequent matrix materials in fiber composites. Mechanical 

properties (stress strain relationship) and progressive failure is still a challenge for 

researchers. Difficulty of a constitutive law in polymer matrix composites is mainly due 

to the characterization of polymer mechanical behavior. The hydrostatic component of 

stress has a significant effect on the load deformation response of resins even at low 

levels of stress. Hydrostatic stresses are known to affect the yield stress and nonlinear 

response of polymers; the absolute value of the yield stress in compression is higher than 

the ultimate tensile stress. In order to develop a general model for polymer composite 

materials, the behavior of polymer resins under different types of loading has to be 

understood. Wineman and Rajagopal
9
 (2000) used a viscoplasticity model to capture the 

polymer behavior. Zhang and Moore
10

 (1997) used the Bodner–Partom internal state 

variable model originally developed for metals to obtain the nonlinear uniaxial tensile 

response of polyethylene. By modifying the definitions of the effective stress and 
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effective inelastic strain rate in the Drucker-Prager yield criteria, Li and Pan
5
 (1990), 

Chang and Pan
1
 (1997), and Hsu et al.

3
(1999) developed a viscoplasticity approach for 

the constitutive law of polymer materials. Gilat et al.
2
 (2007) used an internal state 

variable model to modify the Bodner model to capture the effects of hydrostatic stresses 

on the response. In their approach, a single unified strain variable is defined to represent 

all inelastic strains. Jordan et al.
4
 (2008) modified the original Mulliken-Boyce

7
 model 

(2006) for one dimension to capture the compressive mechanical properties of polymer 

composites. The original model is a three dimensional strain rate and temperature 

dependent model for thermoplastic polymers. The majority of the parameters were 

determined by fitting the model to experimental compressive data.  In this study, the 

flexural behavior of a beam is investigated in an attempt to establish a relationship 

between the tensile and compressive stress strain curves in one side and moment 

curvature response of epoxy resin material in the other side. In order to correlate tension, 

compression stress strain curves and flexural data, a closed form solution has been 

developed to obtain moment curvature response. The load deflection response for 

nonlinear materials under determinate static conditions has been developed. Using 

inverse analysis, the effect of stress gradient on the multi-linear stress strain curve 

obtained from the in-plane uniaxial tests has been studied.  

 

Tension and Compression Multi-linear Stress Strain Curve 

 

The multi-linear stress strain curve for tension and compression is bilinear up to the peak 

stress. Figure 1 shows the simplified tension and compression stress-strain relationship of 

epoxy resin materials. The tension and compression curves are defined uniquely by the 

parameters E, PEL, t1, Ut,, , , , co, c1, and Uc. The tensile stress at the 

proportionality elastic point (PEL) is related empirically to the stress at the ultimate 

tensile strength (UTS) point. The ascending part of the tension and compression stress 

strain diagrams consist of two linear parts: 0 to PEL, and PEL to UTS in tension or PEL 

to compressive yield stress (CYS) in compression. The curve after peak strength is 

idealized as horizontal with f and CYS as the post peak sustained stress in tension and 

constant yield strength in compression respectively. The constant post peak tensile stress 

level  shows the ability of the model to represent a continuous (=1) or discontinuous 

stress response. The post peak response in tension terminates at the ultimate tension strain 

level (Ut = Ut PEL), and for compression it ends at ultimate compression strain level (Uc 

= Uc PEL). In the elastic range, the resin beam in bending could be treated as a bi-

modulus material with different moduli in tension and compression. The tension and 

compression stress strain relationship are defined as shown in table 1. 

 

Table 1. Multi-linear stress strain curve 

Stress Definition Domain of strain 

t(t) 

Et   0  t  PEL 

E (PEL +  (t - PEL)) PEL < t  t1 PEL 

 E PEL t1 PEL < t  Ut PEL 

0 Ut PEL < t 

c(c)  E c 0  c  c0 PEL 



E (  c0 PEL +  ( c - c0 PEL)) c0 PEL < c  c1 PEL   

E PEL (  c1 + c0 ( - )) c1 PEL  <  c  Uc PEL 

0 Uc PEL < c 

 

c, t, c, and t are compression and tension stresses and strains respectively. The nine 

normalized parameters used in the definition of the constitutive law are defined by 
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Using classical beam theory, linear distribution of strain across the depth is assumed. The 

stress and strain distribution across a section of a beam with depth h and width b by 

imposing normalized top compressive strain in different cases are shown in Figure 2. 

Normalized heights of compression and tension sub-zones with respect to beam depth h 

are shown in Table 2. Tables 3 and 4 present the normalized stress at the vertices of the 

tension and compression sub-zones with respect to tensile stress at the proportionality 

limit point. The internal force in each compression and tension sub-zone of nine stress 

distribution cases is calculated from the stress diagram and the normalized form with 

respect to the tension force at the proportionality limit point (bhEPEL) is presented in 

Tables 5 and 6. The centroid of the stress in each sub-zone represents the line of action 

and moment arm respect to the neutral axis and is presented in the normalized form in 

Tables 7 and 8. 
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Figure 1. (a) constant flow in tension; (b) constant yield in compression 

 

 

 

 



 

(a) rectangular cross section    (b) case one 

 

 

 

 

 

 

 

 

 

 

(c) case two      (d) case three 

 

 

 

 

 

 

 

 

 

(e) case four      (f) case five 

 

 

 

 

 

 

 

 

 

(g) case six       (h) case seven 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(i) case eight      (j) case nine 

 

 

 

 

 

 

 

 

 

Figure 2. (a) rectangular cross section, (b) to ( j) stress strain distributions across the cross 

section for different cases. 

 

Closed-form Moment Curvature Response 

 

The development of stress strain across the section by increasing the normalized 

compressive strain is presented in Figure 3. Stress strain develops at least to stage 4 

where compressive and tensile failure is possible if max = Uc in case 6, or max = F in 

case 4. Moving through different stages in Figure 3 depends on the controlling value for 

max. Using the auxiliary points defined in Table 9, the transition points defined as tpij 

between different stages in Figure 3 could be presented by the following equations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Strain development in the cross section at the different stages of loading 
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Where indexes i and j refer to origin and destination stages respectively. The net force is 

obtained as the difference between the tension and compression forces in Table 3, 

equated to zero for internal equilibrium, and solved for the neutral axis depth ratio 

defined as . The expressions of net force in some stages result in more than one 

solutions for . Using a large scale of numerical tests covering possible ranges of 

material parameters, the solution of  which yields the valid value 0 <  < 1 was 

determined and presented in Table 10. Moment expressions are obtained by taking the 

first moment of the compression and tension forces about the neutral axis. Curvature is 

calculated by dividing the top compressive strain by the depth of the neutral axis h. The 

closed form solutions for normalized moment Mi and curvature i with respect to the 

values at the tensile PEL points are presented in Equations 5, 6 and 7 and Table 10.  

  

    ,,,,,,,,,,,,,,,,,, 110110 UcUttccPELUcUttcc MMM   (5) 

    ,,,,,,,,,,,,,,,,,, 110110 UcUttccPELUcUttcc
       (6) 
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i
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2
,,,,,,,,, 110  ,    i = 1,2,3,…,9            (7) 

Where MPEL and PEL are moment and curvature (for a material with the same modulus of 

elasticity in tension and compression) at the tensile PEL and are defined as  
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The ultimate moment Mu (flexural strength) is computed based on Equations 5, 8 and 

Table 10. For a ductile material like resin, Mu could approach M at very large  

values. The normalized moment at the very large  values 
M is computed by 

substituting  in the expression for  in case nine of Table 10 and by substitution of 

  and  in the normalized moment expression. Equations 9, 10, and 11 present the 

values of the neutral axis depth, normalized moment, and curvature for very large  

values. 

100 ccc 
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            (9) 
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The neutral axis depth and normalized moment are a function of characteristic points of 

tension and compression stress strain model (, ,,c0, c1). The 9 and M’9 expressions 

are functions of all characteristic points in the stress strain model but when compressive 

strain values are large, they are independent of tensile post PEL stiffness () and strain of 

ultimate tensile strength (t1). For an elastic perfectly plastic materials with equal tensile 

and compression elastic moduli and equal yield and post peak flow stress, Equation 9 and 

10 yields to 0.5 and 1.5 respectively, validating the theoretical value that the plastic 

moment capacity of a rectangular section is 1.5 times its elastic yield strength at c0 = c1 

= t1 = 1 presented by Salmon
8
 (1990). For a set of parameters  ,,c0, c1, the critical 

value of  which results in a flexural capacity in the infinity (before failure) greater than 

the flexural capacity at the tensile PEL point can be found. By equating the normalized 

moment for large top compressive strain to one ( 1M ) the critical value of post peak 

tension flow, critical, is expressed as 

  

  13 100

100






ccc

ccc
critical




             (12) 

 

 

Parametric Study  

 

Parametric studies determine the sensitivity of the different parts of the model to the 

relative behavior of the variables. Although polymer materials show strain softening 

behavior with a percentage of the ultimate tensile strength
9
, a complete set of parametric 

studies was conducted to examine the strain softening materials. Effect of the tension and 

compression stress strain relation on the response of polymer materials was addressed by 

studying the effect of variation of a parameter in the constitutive law while all other 

parameters were held constant to the typical values. Epon E 862 epoxy resin was chosen 

and typical mechanical characteristic of E 862 were extracted from Littell et al.
6
 (2008) 

and are shown in Table 11. 

 

Table 11: Typical characteristic values of stress strain curve for E 862 

E 

(MPa) 
PEL 

(%) 

Uts 

(%) 

Uts 

(MPa) 

ut 

(%) 

f 

(MPa) 

Ec 

(MPa) 
PEL,c 

(%) 

CYS 

(%) 

CYS 

(MPa) 

uc 

(%) 

2069 2.05 7.6 70 24 60.5 2457 1.9 9.2 93 35 

 

The flexural strength and ductility for each material parameter was expressed as the 

normalized moment curvature response, independent of geometry and tensile PEL 

strength. Figure 4 shows the results of the parametric study for strain softening material. 

Figure 4 (a1) to (a3) presents the effect of constant flow tensile strength on the moment 

curvature and on the location of neutral axis depth.  = 0.017 and 1.63 correspond to 



constant tensile plastic flow equal to 1%  and 100%  of the ultimate tensile strength 

respectively. Figure 4 (a2) depicts that moment curvature response is extremely sensitive 

to the variations in constant tensile flow as the location of maximum flexure and the post 

peak regime completely changes with. The flexural response changes from brittle to 

ductile behavior as  increases from 0.017 to 1.63. For the parameters given, Equation 12 

yields to critical = 0.39. Figure 4 (a2) also shows that in order to obtain the bending 

moment at large top compressive strains equal to or greater than the bending capacity at 

the tensile PEL, the required tensile plastic flow should be equal or greater than =0.39 

(25% of the ultimate tensile strength).  When =1.42 the response characterizes exactly 

the material behavior of Epon E 862, and Equation (10) gives 58.2M  as it can be 

seen from Figure 4(a2).  Figure 4 (a3) shows that decreasing the level of tensile flow 

decreases the neutral axis depth, especially for  values less than 0.5 (30% of UTS). 

Tensile failure was the governing mechanism in all the material responses. Materials with 

 = 0.08 and  = 0.017 didn’t experience compression yield and their stress strain 

relationship always were in the elastic compression region. This is the reason that their 

neutral axis depth and moment capacity drops sharply by applying top compressive 

strain, and they show a brittle material behavior. Table 9, Equation 4 and Figure 3 show 

that the stress development in the cross section is totally independent of tensile plastic 

flow in stages 1, 2, 3. Stage 4 would also be independent of  if tp23  C in stage 3. By 

calculating the transition points, one can find out that tp12 = A = 0.9167 in case 2, tp23 = 

c0 = 0.93 in case 5, tp34 = E = 3.358 in case 7, for all  values. For  = 0.017 and 0.08, 

tp45 = H (H(=0.017) = 3.43, and H(=0.08) = 3.70)  and tensile failure happens in stage 

5. However, for  = 0.393, 0.5, 0.83, 1.16, 1.42, 1.49, and 1.62, tp45 would be equal to 

c1 = 4.49 in case 9 and by comparing I() with Uc, all will fail in tension in stage 6. For 

 = 0.017 and 0.08 and in stage 5, since H () is less than c1, tensile failure happens and 

top compressive strain is less than c1. Figure 4 (b1) to (b3) depicts the effect of UTS on 

the moment curvature and neutral axis location at constant tensile post PEL slope and 

constant tensile flow stress. Figure 4(b2) reveals that an increase in t1, increases flexural 

strength and this is clear for high t1 values. However, the amount of 
M  is not affected 

as much as the flexural strength since for t1 > 6 the moment at infinity is less than the 

flexural strength. Figure 4 (b3) shows that by increasing the ultimate tensile strength, 

neutral axis moves downward and approaches toward  = 0.5. One can look at the 

variation of t1 as the variation of CYS to UTS ratio which is defined as 

 
 11 1

010





t

ccc




 and by substituting  = 1.19,  = 0.3,  =0.24, c0 = 0.93, c1 = 4.49, 

it is clear that changes in t1 from 2.75 to 8 will change the CYS to UTS ratio from 1.53 

to 0.81. Figure 4 (c1) shows the compression and tension model with the post tensile PEL 

slope and strain of UTS points varied from 0.15 to 0.6, and 5.33 to 2.083 respectively, at 

fixed UTS and post peak tensile flow. Stress strain models of three sets of  and t1 are 

shown in Figure 4 (c1). Figure 4 (c2) reveals that changes in parameters  and t1 slightly 

affect the moment but extremely affect position of the neutral axis for a wide range of 

normalized top compressive strains between 1 and 4 and that will change the stress 

distribution across the section between elastic and post peak range. In order to study the 

effect of post compressive PEL stiffness, the range of parameters  and c1 were used to 
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represent the variation in   while CYS was constant. The compressive and tensile stress 

strain models are shown in Figure 4 (d1). Unlike the post tensile PEL stiffness, analyses 

of Figure 4 (d2) depicts that flexural strength is quite sensitive to the variations in 

parameter  as it significantly affects the flexural strength. Increasing   and decreasing 

c1 slightly affect the ductility as it is shown in Figure 4 (d2). Figure 4 (d3) shows the 

profile of the neutral axis position versus the applied top compressive strain. Curves of ( 

= 0.1, c1 = 11.61) and ( = 0.2, c1 = 6.27) have completely different shape comparing 

to others. After  exceeds the compressive PEL, the neutral axis depth increases sharply 

to statically equilibrate the axial forces in the cross section but since CYS is greater than 

UTS and tensile plastic flow, it starts to decrease in post peak regions. Material with ( = 

0.1, c1 = 11.61) did not experience any yield in compression and all are failed in tension. 

Figure 4 (e1) shows the compressive and tensile stress strain relationship with different  

and constant c1. CYS is from 62.04 MPa for  = 0.1 to 137.54 MPa for  = 0.6. UTS is 

70.2 MPa and constant for all cases. Increasing the compressive yield strength 100%, the 

flexural capacity increases around 40% as it is shown by the normalized moment 

curvature plots in Figure 4 (e2). Figure 4 (e3) depicts that for  = 0.1 and 0.2 as CYS is in 

the range of UTS, the neutral axis is almost in the middle of the section along all loading 

stages. Analyses indicate that tension is the governing failure mechanism in all cases 

while compression strain exceeds the yield point. In order to study the effect of initial 

compressive stiffness, a range of parameters,  and c0,  were coupled to represent the 

increase in relative compressive to tensile stiffness from 0.8 to 1.4 at a fixed compressive 

PEL to tensile PEL ratio of c0 = 1.107 as shown in Figure 4 (f1). Figure 4 (f2) and (f3) 

reveal that changes in the relative stiffness slightly affect the moment curvature and the 

location of the neutral axis especially in the nonlinear phase. Analyses show that all the 

cases experience yielding in compression and failure in tension. 
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Figure 4: Parametric study of a typical strain softening material  

 

Load Deflection Relationship 

 

When a beam is loaded beyond the modulus of rupture (MOR) in a material with 

deflection softening behavior, increase the deformation decreases load in the distinct zone 

(around the loading nose in 3PB) in the cracking region while the rest of the beam 

undergoes unloading. The length of the localized zone in 3PB with notch or groove was 

assumed to be 1 mm (around 2% of the beam length). Moment distribution along the 



beam is obtained through the static equilibrium of the beam, and the curvature of each 

point along the beam is obtained though the moment curvature diagram. For epoxy 

resins, if compressive modulus of elasticity and CYS are greater than the tensile modulus 

of elasticity and UTS, the shape of the moment curvature diagram greatly depends on the 

value of the post peak tensile stress. In order to obtain the load deflection response for 

3PB from the moment curvature diagram, an array of discrete load steps is defined for a 

given moment curvature diagram using static equilibrium. The specimen is loaded from 0 

to Pmax in the ascending portion of the moment curvature diagram from 0 to Mmax. The 

curvature for this portion is determined directly from the moment curvature diagram. 

Once the moment reaches MOR, the curvature distribution along the beam in the 

softening regime depends on the location and the history of the strain at that point. In this 

study, the length of the localized zone is taken as 1 mm, thus the majority of the sections 

along the beam will undergo unloading. For the sections with moment less than the 

moment at limit of proportionality (LOP), the curvature unloads elastically, while for the 

sections that have been loaded beyond MLOP, the unloading curvature will depend on the 

recovery percentage of curvature, which can be taken as zero in the monotonic 

displacement control 3PB test. Knowing the curvature values along the beam for each 

load step, one can calculate the deflection at the mid-span for each load step using 

moment area method numerically. 

 

Experimental Results  

 

Tension, compression, and 3PB bending tests were conducted on two hydraulically 

driven materials test systems (MTS 4411, MTS syntech 1/S), and an electrical desktop 

load frame (Dual Column Servo-all-Electric Frame Model #:800LE) as shown in Figure 5 

at room temperature and at low speed. An interface load cell (interface model SM-1000) 

was used to measure the axial load in all the tests. Digital image correlation technique 

(ARAMIS 4M) was used to study the strain fields. This technique recognizes the surface 

structure of the object to be measured in digital camera images and allocates coordinates 

to the image pixels. Stress-strain relationship could be found using this technique as it is 

capable of capturing loads off of the test machine and showing loads in the output file. 

Dog bone samples with a gage length of 14 mm and a rectangular cross section of 3.18 

mm  3.43 mm were selected to conduct the monotonic tensile tests at the rate of 59 

str/sec and 493 str/sec. Small cubic samples (4 mm  4 mm  4 mm) were tested under 

monotonic compression at the rate of 493 str/sec. Small beams with the width of 4 mm, 

thickness of 10 mm, and length of 60 mm with a groove in the middle of the beam were 

selected to conduct 3PB tests. Flexural tests were done with different speeds of 0.217 

mm/min, 0.542 mm/min, and 1.813 mm/min approximately corresponding to axial strain 

rates of 59 str/sec, 148 str/sec, and 493 str/sec. Epoxy resin Epon E 863 with a 

hardener EPI-CURE 3290 using a 100/27 weight ratio was used. Figure 6 illustrates the 

experimental true stress strain curves from tension and compression tests. Through 

triggering between load cell and optical system and examining the strain field around the 

loading nose, Moment curvature response from the 3PB tests were obtained and 

illustrated in Figure 7. In tension and compression tests, vertical strain along the samples 

was calculated by taking the average of values of nine stage points located on a sign “+”  
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Figure 5. (a) 3PB test set-up; and (b) compression test  
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Figure 6. (a) True stress strain tension response; and (b)True stress strain compression  

behavior 
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Figure 7. (a) Moment Curvature response for B_2m samples with groove from 3PB test 

(b) Load deflection response of B_2 and B_2m samples with notch and groove 

 

Flexural Response of Epon E 863 

 

A simulation was used to study the moment curvature and load deflection response of 

Resin Epon 863 and to evaluate the effects of out of plane loading. The tension and 

compression stress strain response and the simplified model for strain rate of 493 str/sec 

are shown in Figure 8 (a). Figure 8 (a) also shows the modified model which has been 

obtained from back calculation of the experimental moment curvature response. The 

mechanical properties of the simplified model for 493 str/sec are presented in Table 12.  

 

Table 12: simplified stress strain mechanical properties of Epon E 863 at 493 str/sec 

E 

(MPa) 
PEL 

(%) 

Uts 

(%) 

Uts 

(MPa) 

Ut 

(%) 

f 

(MPa) 

Ec 

(MPa) 
PEL,c 

(%) 

CYS 

(%) 

CYS 

(MPa) 

Uc 

(%) 

3049 1.62 4.13 79.6 34.9 68 3330 1.86 5.72 96.9 25.4 
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Figure 8: (a) Experiment, model, and fitted model of tension and compression stress 

strain curve for 493 str/sec (b) simulation of moment curvature for sample B_2m-5 with 

groove and strain rate of 493 str/sec; (c) simulation of load deflection for sample B_2m-

5 with strain rate of 493 str/sec 
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Figure 9: (a) Experiment, model, and fitted model of tension and compression stress 

strain curve for 493 str/sec for B_2-3; and (b) simulation of load deflection for sample 

B_2-3 with strain rate of 493 str/sec 

 

Based on the mechanical properties presented in Table 12, the nine non-dimensional 

parameters for the model are the following: c0 = 1.148, c1 = 3.53, Uc = 15.70, t1 = 

2.55, Ut = 21.54,  = 1.09,  = 0.395,  = 0.305, and  = 1.376. Figure 8 (b) shows the 

moment curvature curves from the 3PB test (sample B_2m-5 with groove) compared with 

the simulation results. Figure 8 (b) shows that the tension compression model 

underpredicts the moment curvature response. Two main reasons for the under prediction 

are the difference between stress distribution profiles between uniaxial test and bending 

test, and the effect of lateral constraint in bending tests. In tension and compression tests, 

the entire volume of the sample is subjected to the same load and has the same 

probability of failure. However, in a bending test, only a small fraction of the tension and 

compression regions are subjected to the maximum peak stress. Therefore, the probability 

of crack nucleation, propagation, and failure development in tension and compression 

samples is higher than the bending samples. Table 13 compares the limit of 

proportionality (LOP), modulus of rupture (MOR) of samples B-1, B-2, and B-3 with 

PEL stress and CYS in compression of sample C-1 (a representative of the compression 

tests) and PEL stress and UTS in tension of sample T-1 (a representative of the tension 

tests).  

 

Table 10: PEL, CYS, UTS, LOP, and MOR of samples 

Sample 
PELt 

(MPa) 

UTS 

(MPa) 

PELc 

(MPa) 

CYS 

(MPa) 

LOP 

(MPa) 

MOR 

(MPa) 

C-1 - - 61 97.0 - - 

T-1 49.4 79.6 - - - - 

B_2-2 - - - - 81.4 106.08 

B_2-3 - - - - 83.3 111.90 

B_2m-5 - - - - 83.3 132.2 

 

Results of the uniaxial and bending tests conducted by the authors
 
showed that the ratio 

of LOP to MOR is up to 14% higher than the ratios of PELt to UTS and PELc to CYS. In 

bending tests without axial force, while a part of the cross section is subjected to 

compression, the other part is subjected to tension. This stress profile results in an 

increase in tensile and/or compressive modulus of elasticity. To quantify these effects, the 

authors propose two scaling factors to modify the modulus of elasticity and strength of 

the material, Emod = C1  E, and PEL,mod = PEL  C2/C1, and using the same nine non-

dimensionalized parameters. Back calculation showed that C1 for Epon E 863 is around 

1.2 to 1.55 while C2 is between 1.05 and 1.15. Various amounts of imperfections in 

material directly affect C2 coefficient but maximum of (
MOR

LOP
 to 

UTS

PEL
) and (

MOR

LOP
to 

CYS

PEL
) could be considered as the upper bound. An inverse analysis approach of flexural 

results will establish a statistical relationship between the compression, tension stress 



strain and the flexural response. Inverse analysis showed that C1 and C2 for sample 

B_2m-5 are 1.2 and 1.12 respectively as shown in Figure 8 (b) and (c).  Figure 9 illustrate 

the model and the fitted model as well as experimental and simulated load deflection 

response for sample B_2-3. The rate of loading in the 3PB test for these sample were 

1.813 mm/min (for B_2m-5) and 1.76 mm/min (for B_2-3) corresponding to 493 

str/sec. C1 = 1.55 and C2 = 1.05 were used as the scaling factors for sample B_2-3 as the 

result of inverse analysis. While the modified models in samples B_2-3 captured the load 

deflection response up to peak load well, they did not follow the deflection softening 

behavior up to failure. Results of the parametric study showed that simulation of 

softening can be improved by changing the post peak tensile level and further 

adjustments of the other parameters. Modification of tension and compression models in 

the strain softening region will improve the simulation of the model in the post peak 

response for bending samples with notch. 

 

Concluding Remarks 

 

Explicit moment curvature equations using nonlinear tension and compression stress 

strain relation for epoxy resin materials have been developed. A multi-linear stress strain 

relation for epoxy resin materials, consisting of a constant post peak response in tension 

and constant yield stress in compression has been used. The material model is described 

by two intrinsic material parameters: (a) tensile modulus of elasticity and (b) tensile 

strain at the PEL point, in addition to five non-dimensional parameters for compression 

and four non-dimensional parameters for tension. A parametric study showed that the 

normalized moment-curvature response is primarily controlled by the normalized post 

peak tensile strength, normalized UTS, normalized post compressive PEL stiffness, and 

normalized CYS. Results show that for materials with small values of post peak tensile 

strength, reduction of moment curvature response in the softening regime is considerably 

fast and the response terminates with a relatively low compressive strain. Materials with 

higher normalized post peak tensile strength have a gradual reduction in the height of the 

compressive zone, therefore larger deformations are possible. Results show that while 

very brittle materials have a moment capacity equal to or less than the moment at PEL 

point, epoxy resin materials with a considerable amount of post peak tensile strength have 

a moment capacity around 2.5 times the moment at the PEL point. Results showed that 

for resin materials with post compressive PEL stiffness between 30% and 40% of initial 

tensile modulus of elasticity with a fixed CYS strain value, the moment capacity is 

around 2.5 times the moment at the PEL point. Increasing CYS by increasing the post 

compressive PEL stiffness at high CYS values marginally affects the moment capacity in 

polymer materials. Simulation of the load deflection response of polymer materials in 

3PB test revealed that direct use of tension and compression data under predicts the 

flexural response. Load deflection response showed that the nominal flexural stress at the 

peak load estimated by a linear elastic mechanical of material approach is higher than the 

uniaxial ultimate tensile strength. Curvature distribution along the beam was integrated 

up to the mid-span of the beam to obtain load deflection response in 3PB. Simulations of 

the experimental data clearly revealed the effect of stress gradient on the material 

behavior as the uniaxial tensile and compression tests yields a lower tensile and 

compression strength than the flexural tests. By applying two scaling factors (C1 and C2) 



to E and PEL, tension and compression stress strain model presented by E, PEL and nine 

normalized parameters (c0, c1, Uc , t1 , Ut , , , , and ) could be used for 

simulations under flexural loading.  
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Appendix 

 

Table 2: Normalized height of tension and compression sub zone for each case  

Case 
h

hc3  
h

hc2  
h

hc1  
h

ht1  
h

ht 2  
h

ht3  

1 

 
- -    1  - - 

2 - -   



 




 1  - 

3 - 












 01 c  



 0c   1  - - 

4 - -   



  11 t




 




 11 t  

5 - 












 01 c  



 0c  



 




 1  - 

6 












 11 c   01 cc 




  



 0c   1  - - 

7 - 












 01 c  



 0c  



  11 t




 




 11 t  

8 












 11 c   01 cc 




  



 0c  



 




 1  - 

9 












 11 c   01 cc 




  



 0c  



  11 t




 




 11 t  

 

Table 3: Normalized stress at vertices of each tension sub zone for each case  

Case 
PEL

t

E

 1  
PEL

t

E

 2  
PEL

t

E

 3  

1 

 












 1
 - - 

2 1 
 












 1

1
1




  - 

3 










 1
 - - 

4 1  11 1  t   

5 1 
 












 1

1
1




  - 

6 










 1
 - - 



7 1  11 1  t   

8 1 
 












 1

1
1




  - 

9 1  11 1  t   

 

Table 4: Normalized stress at vertices of each compression sub zone for each case  

Case 
PEL

c

E

 3  
PEL

c

E

 2  
PEL

c

E

 1  

1 

 
- -   

2 - -   

3 -  00 cc    
0c  

4 - -   

5 -  00 cc    
0c  

6  010 ccc     010 ccc    
0c  

7 -  00 cc    
0c  

8  010 ccc     010 ccc    
0c  

9  010 ccc     010 ccc    
0c  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5: Normalized force component of each tension sub-zone for each case 

 

 

 

 

 

 

 

 

 

 

 

 

Case 

PEL

t

bhE

F


1

 

PEL

t

bhE

F


2

 

PEL

t

bhE

F


3

 

1 

 






22
  - - 

2 




2
 

 





















2,
2

2

222

2

1 2

p

p

 - 

3 







22
  - - 

4 




2
 

  




2

12 11  tt
 

 







 1t  

5 




2
 

 












22

222

2

1 2





 p  - 

6 







22
  - - 

7 




2
 

  




2

12 11  tt
 

 







 1t  

8 




2
 

 












22

222

2

1 2





 p  - 

9 




2
 

  




2

12 11  tt
 

 







 1t  



 

Table 6: Normalized force component of each compression sub-zone for each case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 

PEL

c

bhE

F


3

 

PEL

c

bhE

F


2

 

PEL

c

bhE

F


1

 

1 

 
- - 

2


 

2 - - 
2


 

3 - 

 

 00

0

2

2

cc

c

q

q











 




2

2

0c
 

4 - - 
2


 

5 - 
 





2

0cq 
 





2

2

0c
 

6 

 

 010

1

ccc

c

s

s











 

 

 010

01

2

2

ccc

cc

r

r











 





2

2

0c
 

7 - 
 





2

0cq 
 





2

2

0c
 

8 
 



 1cs 
 

 




2

01 ccr 
 





2

2

0c
 

9 
 



 1cs 
 

 




2

01 ccr 
 





2

2

0c
 



 

Table 7. Normalized moment arm to neutral axis of each tension sub-zone in each case 

 

 

 

 

 

 

 

 

 

 

 

 

Case 
h

Z t1
 

h

Z t2
 

h

Z t3
 

1 

 
 1

3

2
 - - 

2 




3

2
  

 34,2

33,
3

2

2

2

2

1

2

2

2

1















y

y
p

yy

 - 

3  1
3

2
 - - 

4 




3

2
 

 12,

233,
3

15

1

2

114

5

4





t

ttt

y

y
y

y








 
 








 




 11
2

1 t  

5 




3

2
 

 







p

yy

3

2 2

2

2

1
 - 

6  1
3

2
 - - 

7 




3

2
 





5

4

3y

y
 

 







 




 11
2

1 t  

8 




3

2
 

 







p

yy

3

2 2

2

2

1
 - 

9 




3

2
 





5

4

3y

y
 

 







 




 11
2

1 t  



 

Table 8. Normalized moment arm to neutral axis of each compression sub-zone in each 

case 

 

 

 

 

 

 

 

 

 

 

 

 

Case 
h

Zc3
 

h

Z c 2
 

h

Z c1
 

1 

 
- - 

3

2
 

2 - - 
3

2
 

3 - 

2

0

2

0

0

2

03

3

23

3,
3












cc

ccy
q

y

 




3

2 0c
 

4 - - 
3

2
 

5 - 




q

y

3

3
 





3

2 0c
 

6 
 





2

1c
 

2

110

2

0

10

2

06
6

23

3,
3

cccc

cccy
r

y











 





3

2 0c
 

7 - 




q

y

3

3
 





3

2 0c
 

8 
 





2

1c
 





r

y

3

6
 





3

2 0c
 

9 
 





2

1c
 





r

y

3

6
 





3

2 0c
 



Table 9: Auxiliary transition points in the stress strain development diagram 
A() 







1
 

B(,,c0)    



  2

00 cc
 

C(,,t1)  


 121 1

2

1  tt  

D(,,c0,c1)  
  010

2

0

2

1

2

0

2

1

ccc

ccc








 

E(,,c0,,t1)       



 121 1

2

1

2

00  ttcc
 

F(,,t1,Ut,)    


 1212 1

2

11  tttUt  

G(,,c0,c1,,t1)     
  010

2

0

2

1

2

01

2

1

2

211

ccc

ccctt








 

H(,,c0,,t1,Ut,)         



 1212 1

2

1

2

010  ttctUtc

 
I(,,c0,c1,,t1,Ut,)       

  010

2

0

2

1

2

01

2

11

2

2112

ccc

ccctttUt








 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Table 10: Neutral axis depth ratio, and moment for each case  

 

 

 

 

  

Case i M’i 

1 
1

1








  

1

1

2

1

2
6612




   

2 

  
2

1

2111









t
, 

t1=   121
2

   

     
2

10292

2

2

32
22131


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